Spatial Analysis: Development of Descriptive and Normative Methods with Applications to Economic-Ecological Modelling
01.01.2004
Anastasios Xepapadeas, William Brock
Q2,C6
Spatial analysis,Economic-ecological modelling
Climate Change and Sustainable Development
Carlo Carraro
This paper adapts Turing analysis and applies it to dynamic bioeconomic problems where the interaction of coupled economic and ecological dynamics over space endogenously creates (or destroys) spatial heterogeneity. It also extends Turing analysis to standard recursive optimal control frameworks in economic analysis and applies it to dynamic bioeconomic problems where the interaction of coupled economic and ecological dynamics under optimal control over space creates a challenge to analytical tractability. We show how an appropriate formulation of the problem reduces analysis to a tractable extension of linearization methods applied to the spatial analog of the well known costate/state dynamics. We illustrate the usefulness of our methods on bioeconomic applications, but the methods have more general economic applications where spatial considerations are important. We believe that the extension of Turing analysis and the theory associated with dispersion relationship to recursive infinite horizon optimal control settings is new.