Think Tank Award Webinar

Climate change impacts on terrestrial biodiversity and ecosystems

Prof. Dr. Josef Settele – Helmholtz Centre for Environmental Research; IPBES Global Assessment

November 6th, 2017
Climate change impacts on terrestrial biodiversity and ecosystems – results based on IPCC and IPBES assessments

Josef Settele
Helmholtz Centre for Environmental Research – UFZ, Department of Community Ecology, Animal Ecology and Social-Ecological Research
Josef.Settele@ufz.de
IPCC references

IPBES references

Summary for Policymakers

Drafting Authors:
Christopher B. Field (USA), Vicente R. Barros (Argentina), Michael D. Mastrandrea (USA),
Katharine J. Mach (USA), Mohamed A.-K. Abdurabo (Egypt), W. Neil Adger (UK),
Yury A. Anokhin (Russian Federation), Oleg A. Arnânov (Russian Federation), Douglas J. Arntz
(USA), Jonathon Barnett (Australia), Virginia R. Burkett (USA), Rongshuo Cai (China),
Monalisaa Chatterjee (USA/India), Stewart J. Cohen (Canada), Wolfgang Cramer
(Germany/France), Pumamita Dasgupta (India), Debra J. Davidson (Canada), Fatima Denton
(Gambia), Petra Döll (Germany), Kirstin Dow (USA), Yasuaki Hijioka (Japan),
Ove Hoegh-Guldberg (Australia), Richard G. Jones (UK), Roger N. Jones (Australia),
Roger J. Kitching (Australia), R. Sari Kovats (UK), Joan Nymand Larsen (Iceland), Erda Lin
(China), David B. Lobell (USA), Iñigo J. Losada (Spain), Graciela O. Magrin (Argentina),
José A. Marengo (Brazil), Ana Marandia (Spain), Bruce A. McCarry (USA), Roger F. McLean
(Australia), Linda O. Mearns (USA), Guy F. Midgley (South Africa), Nobuo Mimura (Japan),
John E. Morton (UK), Isabelle Niang (Senegal), Ian R. Noble (Australia), Leonard A. Nurse
(Barbados), Karen L. O'Brien (Norway), Takanori Oki (Japan), Lennart Ollson (Sweden),
Michael Oppenheimer (USA), Jonathan T. Overpeck (USA), Joy J. Pereira (Malaysia),
Elvira S. Polozańska (Australia), John R. Porter (Denmark), Hans-O. Porten (Germany),
Michael J. Prather (USA), Roger S. Pulwarty (USA), Andy Reisinger (New Zealand),
Aromar Revi (India), Patricia Romero-Lankao (Mexico), Oliver C. Ruppel (Namibia),
David E. Satterthwaite (UK), Daniela N. Schmidt (UK), Josef Settele (Germany), Kirk R. Smith
(USA), Daithi A. Stone (Canada/South Africa/USA), Avelino G. Suarez (Cuba), Petra Tschanert
(USA), Riccardo Valentini (Italy), Alicia Villamizar (Venezuela), Rachel Warren (UK),
Thomas J. Wilbanks (USA), Poh Poh Wong (Singapore), Allistar Woodward (New Zealand),
Gary W. Yohe (USA)

This Summary for Policymakers should be cited as:
Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea,
T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken,
P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New
York, NY, USA. pp. 1-32.
A: OBSERVED IMPACTS, VULNERABILITY, AND ADAPTATION IN A COMPLEX AND CHANGING WORLD

A-1. Observed Impacts, Vulnerability, and Exposure
In recent decades, changes in climate have caused impacts on natural and human systems on all continents and across the oceans.

Evidence of climate-change impacts is strongest and most comprehensive for natural systems.

Attribution of observed impacts in the WGII AR5 generally links responses of natural and human systems to observed climate change, regardless of its cause.

IPCC (2014)
In many regions, changing precipitation or melting snow and ice are altering hydrological systems, affecting water resources in terms of quantity and quality (medium confidence).

Glaciers continue to shrink almost worldwide due to climate change (high confidence), affecting runoff and water resources downstream (medium confidence). Climate change is causing permafrost warming and thawing in high latitude regions and in high-elevation regions (high confidence).
Many terrestrial, freshwater, and marine species have shifted their geographic ranges, seasonal activities, migration patterns, abundances, and species interactions in response to ongoing climate change (high confidence).

While only a few recent species extinctions have been attributed as yet to climate change (high confidence), natural global climate change at rates slower than current anthropogenic climate change caused significant ecosystem shifts and species extinctions during the past millions of years (high confidence).
viii) Risk of loss of terrestrial and inland water ecosystems, biodiversity, and the ecosystem goods, functions, and services they provide for livelihoods. [RFC 1, 3, and 4]
Assessment Box SPM.1. Human Interference with the Climate System

Human influence on the climate system is clear. Yet determining whether such influence constitutes “dangerous anthropogenic interference” in the words of Article 2 of the UNFCCC involves both risk assessment and value judgments. This report assesses risks across contexts and through time, providing a basis for judgments about the level of climate change at which risks become dangerous.

Five integrative reasons for concern (RFCs) provide a framework for summarizing key risks across sectors and regions.
Global mean temperature change

(°C relative to 1986–2005)

Level of additional risk due to climate change

- Undetectable
- Moderate
- High
- Very high

(°C relative to 1850–1900, as an approximation of preindustrial levels)

2003–2012
1) **Unique and threatened systems:**

Some unique and threatened systems, including ecosystems and cultures, are already at risk from climate change (*high confidence*). The number of such systems at risk of severe consequences is higher with additional warming of around 1°C. Many species and systems with limited adaptive capacity are *subject to very high risks with additional warming of 2°C, particularly Arctic-sea-ice and coral-reef systems.*

IPCC (2014)
4) Global aggregate impacts: Risks of global aggregate impacts ... (to both Earth’s biodiversity and the overall global economy). Extensive biodiversity loss with associated loss of ecosystem goods and services results in high risks around 3°C additional warming (high confidence). Aggregate economic damages accelerate with increasing temperature (limited evidence, high agreement) but few quantitative estimates have been completed for additional warming around 3°C or above.

IPCC (2014)
B-2. Sectoral Risks and Potential for Adaptation

Terrestrial and freshwater ecosystems

A large fraction of both terrestrial and freshwater species faces increased extinction risk under projected climate change during and beyond the 21st century, especially as climate change interacts with other stressors, such as habitat modification, overexploitation, pollution, and invasive species (high confidence).
Extinction risk is increased under all RCP scenarios, with risk increasing with both magnitude and rate of climate change.

Many species will be unable to track suitable climates under mid- and high-range rates of climate change (i.e., RCP4.5, 6.0, and 8.5) during the 21st century (medium confidence).

Lower rates of change (i.e., RCP2.6) will pose fewer problems.
Within this century, magnitudes and rates of climate change associated with medium- to high-emission scenarios (RCP4.5, 6.0, and 8.5) pose high risk of abrupt and irreversible regional-scale change in the composition, structure, and function of terrestrial and freshwater ecosystems, including wetlands (*medium confidence*).

Examples that could lead to substantial impact on climate are the boreal-tundra Arctic system (*medium confidence*) and the Amazon forest (*low confidence*). Carbon stored in the terrestrial biosphere (e.g., in peatlands, permafrost, and forests) is susceptible to loss to the atmosphere as a result of climate change, deforestation, and ecosystem degradation (*high confidence*).
Settele et al. (2014)

Boreal-Tundra Biome Shift

Global warming

- CO₂ emissions
- Warmer spring and summer
- Increased fire intensity
- Replacement of conifers by broadleaf forest

Decrease in albedo

- Shorter duration of snow cover
- Shrub encroachment and densification

Gap opening between land and sea ice alters coastal circulation

Sea ice retreating

Coastal sea

Sea ice

Tundra

New wetlands emit CH₄

Lakes drain or form as permafrost thaws and drainage changes

Permafrost is thawing in warmer regions

Biomes moving north

Permafrost

Organic layer

Boreal forest

Insulating organic layer contains a large carbon stock that decomposes faster under warmer climate

Soil carbon export to rivers increases with permafrost thaw

Settele et al. (2014)
Boreal tipping point: Arctic ecosystems are vulnerable to abrupt change related to the thawing of permafrost and spread of shrubs in tundra and increase in pests and fires in boreal forests. (medium confidence); and there are hardly any adaptation options in the Arctic.

(from main text of chapter 4)
Increased tree mortality and associated forest dieback is projected to occur in many regions over the 21st century, due to increased temperatures and drought (*medium confidence*).

Forest dieback poses risks for carbon storage, biodiversity, wood production, water quality, amenity, and economic activity.
4 Terrestrial and Inland Water Systems

Coordinating Lead Authors:
Josef Settele (Germany), Robert Scholes (South Africa)

Lead Authors:
Richard A. Betts (UK), Stuart Bunn (Australia), Paul Leadley (France), Daniel Nepstad (USA), Jonathan T. Overpeck (USA), Miguel Angel Taboada (Argentina)

Contributing Authors:
Rita Adrian (Germany), Craig Allen (USA), William Anderegg (USA), Celine Belland (France), Paulo Brando (Brazil), Louise P. Chini (New Zealand), Frank Courchamp (France), Wendy Foden (South Africa), Dieter Gerten (Germany), Scott Goetz (USA), Nicola Golding (UK), Patrick Gonzalez (USA), Ed Hawkins (UK), Thomas Hickler (Germany), George Hurtt (USA), Charles Koven (USA), Josh Lawler (USA), Heike Lischke (Switzerland), Georgina M. Mace (UK), Melodie McGech (Australia), Camille Parmesan (USA), Richard Pearson (UK), Beatriz Rodriguez-Labajos (Spain), Carlo Rondinini (Italy), Rebecca Shaw (USA), Stephen Stich (UK), Klement Tockner (Germany), Piero Veronese (UK), Marten Winter (Germany)

Review Editors:
Andreas Fischlin (Switzerland), José M. Moreno (Spain), Terry Root (USA)

Volunteer Chapter Scientists:
Martin Musche (Germany), Marten Winter (Germany)

This chapter should be cited as:
Settele, J., R. Scholes, R. Betts, S. Bunn, P. Leadley, D. Nepstad, J.T. Overpeck, and M.A. Taboada, 2014:
Coordinating Lead Authors:
Josef Settele (Germany), Robert Scholes (South Africa)

Lead Authors:
Richard A. Betts (UK), Stuart Bunn (Australia), Paul Leadley (France), Daniel Nepstad (USA), Jonathan T. Overpeck (USA), Miguel Angel Taboada (Argentina)

Contributing Authors:
Rita Adrian (Germany), Craig Allen (USA), William Anderegg (USA), Celine Bellard (France), Paulo Brando (Brazil), Louise P. Chini (New Zealand), Franck Courchamp (France), Wendy Foden (South Africa), Dieter Gerten (Germany), Scott Goetz (USA), Nicola Golding (UK), Patrick Gonzalez (USA), Ed Hawkins (UK), Thomas Hickler (Germany), George Hurtt (USA), Charles Koven (USA), Josh Lawler (USA), Heike Lischke (Switzerland), Georgina M. Mace (UK), Melodie McGeoch (Australia), Camille Parmesan (USA), Richard Pearson (UK), Beatriz Rodriguez-Labajos (Spain), Carlo Rondinini (Italy), Rebecca Shaw (USA), Stephen Sitch (UK), Klement Tockner (Germany), Piero Visconti (UK), Marten Winter (Germany)

Review Editors:
Andreas Fischlin (Switzerland), José M. Moreno (Spain), Terry Root (USA)

Volunteer Chapter Scientists:
Martin Musche (Germany), Marten Winter (Germany)
EXECUTIVE SUMMARY

Climate change is projected to be a powerful stressor on terrestrial and freshwater ecosystems in the second half of the 21st century, especially under high-warming scenarios such as RCP6.0 and RCP8.5 (high confidence).

Direct human impacts such as land use and land use change, pollution, and water resource development will continue to dominate the threats to most freshwater (high confidence) and terrestrial (medium confidence) ecosystems globally over the next 3 decades. Changing climate exacerbates other impacts on biodiversity (high confidence).

Settele et al. (2014)
EXECUTIVE SUMMARY

Ecosystem changes resulting from climate change may not be fully apparent for several decades, owing to long response times in ecological systems (medium confidence).

In high-altitude and high-latitude freshwater and terrestrial ecosystems, climate changes exceeding those projected under RCP2.6 will lead to major changes in species distributions and ecosystem function, especially in the second half of the 21st century (high confidence).

Settele et al. (2014)
A large fraction of terrestrial and freshwater species face increased extinction risk under projected climate change during and beyond the 21st century, especially as climate change interacts with other pressures, such as habitat modification, overexploitation, pollution, and invasive species (high confidence).

The extinction risk is increased under all RCP scenarios, and the risk increases with both the magnitude and rate of climate change.
EXECUTIVE SUMMARY

(T)here is generally very low confidence that observed species extinctions can be attributed to recent climate change.

Models project that the risk of species extinctions will increase in the future owing to climate change, but there is low agreement concerning the fraction of species at increased risk, the regional and taxonomic focus for such extinctions and the time frame over which extinctions could occur.

Settele et al. (2014)
IPBES Plenary: 4th Session

Pollinators, Pollination and Food Production

Deliverable 3a
CHAPTER 2

DRIVERS OF CHANGE OF POLLINATORS, POLLINATION NETWORKS AND POLLINATION

Coordinating Lead Authors:
Anikó Kovács-Hostyánszki (Hungary), Jilian Li (China), Jeff Pettis (USA), Josef Settele (Germany)

Lead Authors:

Contributing Authors:
Katherine Baldock (UK), Luc P. Belzunces (France), Scott Black (USA), Tjeerd Blacquiére (The Netherlands), Jordi Bosch (Spain), Panuwan Chantawannakul (Thailand), Lynn Dicks (UK), Mark Goddard (UK), Alexander Harpke (Germany), Rodolfo Jaffé (Brazil), Jane Memmott (UK), Caroline L. Moraes, Michael Nix (UK), L.K. Ollerton (UK), Paola Pena (Wildlife Trusts)
Coordinating Lead Authors:

Anikó Kovács-Hostyánszki (Hungary), Jilian Li (China), Jeff Pettis (USA), Josef Settele (Germany)

Lead Authors:

Thomas Aneni (Nigeria), Anahí Espíndola (Argentina), Sih Kahono (Indonesia), Hajnalka Szentgyörgyi (Poland), Helen Thompson (UK), Adam Vanbergen (UK), Rémy Vandame (Mexico)

Contributing Authors:

Katherine Ballock (UK), Luc P. Belzunces (France), Scott Black (USA), Tjeerd Blacquière (The Netherlands), Jordi Bosch (Spain), Panuwan Chantawannakul (Thailand), Lynn Dicks (UK), Mark Goddard (UK), Alexander Harpke (Germany), Rodolfo Jaffé (Brazil), Jane Memmott (UK), Carolina L. Morales (Argentina), Oliver Schweiger (Germany)

Review Editors:

Claire Kremen (USA), Kong Luen Heong (Malaysia), Nigel Raine (Canada)
Climate change

- For some pollinators (e.g. bumblebees and butterflies):
 - Range changes
 - Altered abundance
 - Shifts in seasonal activities
 - Risk of disruption of future crop pollination

- Climate shifts across landscapes may exceed species dispersal abilities

Red-tailed bumblebee (*Bombus lapidarius*)
EXECUTIVE SUMMARY

Widespread transformation of terrestrial ecosystems in order to mitigate climate change, such as carbon sequestration through planting fast-growing tree species into ecosystems where they did not previously occur, or the conversion of previously uncultivated or non-degraded land to bioenergy plantations, will lead to negative impacts on ecosystems and biodiversity (*high confidence*).

For example, the land use scenario accompanying the mitigation scenario RCP2.6 features a large expansion of biofuel production, displacing natural forest cover.

Settele et al. (2014)
Thank you!
Q&A

If you have any questions, please write us on the GoToWebinar chat. For time management reasons, we don’t assure that all questions will be answered.

For information on the forthcoming webinars, visit the ICCG website: www.iccgov.org